
CS6659-Artificial Intelligence 

 Page 1 

 

UNIT-3 

 

CHAPTER 1 

 

3.1 KNOWLEDGE INFERENCE 

 

The object of a knowledge representation is to express knowledge in a computer tractable form, 

so that it can be used to enable our AI agents to perform well.  

A knowledge representation language is defined by two aspects: 

1. Syntax The syntax of a language defines which configurations of the components of 

the language constitute valid sentences. 

2. Semantics The semantics defines which facts in the world the sentences refer to, and 

hence the statement about the world that each sentence makes. 

This is a very general idea, and not restricted to natural language. 

Suppose the language is arithmetic, then „x‟, „³‟ and „y‟ are components (or symbols or words) of 

the language the syntax says that „x ³ y‟ is a valid sentence in the language, but „³ ³ x y‟ is not the 

semantics say that „x ³ y‟ is false if y is bigger than x, and true otherwise A good knowledge 

representation system for any particular domain should possess the following properties: 

1. Representational Adequacy – the ability to represent all the different kinds of 

knowledge that might be needed in that domain. 

2. Inferential Adequacy – the ability to manipulate the representational structures to 

derive new structures (corresponding to new knowledge) from existing structures. 

3. Inferential Efficiency – the ability to incorporate additional information into the 

knowledge structure which can be used to focus the attention of the inference 

mechanisms in the most promising directions. 

4. Acquisitional Efficiency – the ability to acquire new information easily. Ideally the 

agent should be able to control its own knowledge acquisition, but direct insertion of 

information by a „knowledge engineer‟ would be acceptable. 

In practice, the theoretical requirements for good knowledge representations can usually be 

achieved by dealing appropriately with a number of practical requirements: 



CS6659-Artificial Intelligence 

 Page 2 

 

1. The representations need to be complete – so that everything that could possibly need 

to be represented, can easily be represented. 

2. They must be computable – implementable with standard computing procedures. 

3. They should make the important objects and relations explicit and accessible – so that 

it is easy to see what is going on, and how the various components interact. 

4. They should suppress irrelevant detail – so that rarely used details don‟t introduce 

necessary complications, but are still available when needed. 

5. They should expose any natural constraints – so that it is easy to express how one 

object or relation influences another. 

6. They should be transparent – so you can easily understand what is being said.  

7. The implementation needs to be concise and fast – so that information can be stored, 

retrieved and manipulated rapidly. 

A Knowledge representation formalism consists of collections of condition-action rules 

(Production Rules or Operators), a database which is modified in accordance with the rules, and 

a Production System Interpreter which controls the operation of the rules i.e The 

'control mechanism' of a Production System, determining the order in which Production Rules 

are fired. A system that uses this form of knowledge representation is called a production system. 

 

3.2 Production Based System 

 

A production system consists of four basic components: 

1. A set of rules of the form Ci ® Ai where Ci is the condition part and Ai is the action 

part. The condition determines when a given rule is applied, and the action 

determines what happens when it is applied. 

2. One or more knowledge databases that contain whatever information is relevant for the 

given problem. Some parts of the database may be permanent, while others may 

temporary and only exist during the solution of the current problem. The information in 

the databases may be structured in any appropriate manner. 



CS6659-Artificial Intelligence 

 Page 3 

 

3. A control strategy that determines the order in which the rules are applied to the 

database, and provides a way of resolving any conflicts that can arise when several rules 

match at once. 

4. A rule applier which is the computational system that implements the control strategy 

and applies the rules. 

 

 

Four classes of production systems:- 

 

1. A monotonic production system 

 

2. A non monotonic production system 

 

3.A partially commutative production system 

 

4. A commutative production system. 

 

Advantages of production systems:- 

 

1. Production systems provide an excellent tool for structuring AI programs. 

 

2. Production Systems are highly modular because the individual rules can be added, 

removed or modified independently. 

 

3. The production rules are expressed in a natural form, so the statements contained in the 

knowledge base should the a recording of an expert thinking out loud. 

 

Disadvantages of Production Systems:- 

 

One important disadvantage is the fact that it may be very difficult to analyse the flow of control 

within a production system because the individual rules don‟t call each other. 

 

Production systems describe the operations that can be performed in a search for a solution to the 

problem. They can be classified as follows.  

Monotonic production system :- 



CS6659-Artificial Intelligence 

 Page 4 

 

 A system in which the application of a rule never prevents the later application of 

another rule, that could have also been applied at the time the first rule was selected. 

Partially commutative production system:- 

A production system in which the application of a particular sequence of rules transforms 

state X into state Y, then any permutation of those rules that is allowable also transforms state x 

into state Y. 

Theorem proving falls under monotonic partially communicative system. Blocks world and 8 

puzzle problems like chemical analysis and synthesis come under monotonic, not partially 

commutative systems. Playing the game of bridge comes under non monotonic , not partially 

commutative system. 

For any problem, several production systems exist. Some will be efficient than others. Though it 

may seem that there is no relationship between kinds of problems and kinds of production 

systems, in practice there is a definite relationship. 

Partially commutative , monotonic production systems are useful for solving ignorable problems. 

These systems are important for man implementation standpoint because they can be 

implemented without the ability to backtrack to previous states, when it is discovered that an 

incorrect path was followed. Such systems increase the efficiency since it is not necessary to 

keep track of the changes made in the search process. 

Monotonic partially commutative systems are useful for problems in which changes occur but 

can be reversed and in which the order of operation is not critical (ex: 8 puzzle problem). 

Production systems that are not partially commutative are useful for many problems in which 

irreversible changes occur, such as chemical analysis. When dealing with such systems, the order 

in which operations are performed is very important and hence correct decisions have to be made 

at the first time itself. 

 

3.3 Frame Based System 

 

A frame is a data structure with typical knowledge about a particular object or concept.  Frames, 

first proposed by Marvin Minsky in the 1970s. 

Example : Boarding pass frames 

QANTAS BOARDING PASS

Carrier: QANTAS AIRWAYS

Name: MR N BLACK

Flight: QF 612

Date: 29DEC

Seat: 23A

From: HOBART

To: MELBOURNE

Boarding: 0620

Gate: 2

AIR NEW ZEALAND BOARDING PASS

Carrier: AIR NEW ZEALAND

Name: MRS J WHITE

Flight: NZ 0198

Date: 23NOV

Seat: 27K

From: MELBOURNE

To: CHRISTCHURCH

Boarding: 1815

Gate: 4



CS6659-Artificial Intelligence 

 Page 5 

 

 

 

 

 

 

 

 

 

Each frame has its own name and a set of attributes associated with it.  Name, weight, height and 

age are slots in the frame Person.  Model, processor, memory and price are slots in the frame 

Computer.  Each attribute or slot has a value attached to it. 

Frames provide a natural way for the structured and concise representation of knowledge.   

A frame provides a means of organising knowledge in slots to describe various attributes and 

characteristics of the object. 

Frames are an application of object-oriented programming for expert systems.  

Object-oriented programming is a programming method that uses objects as a basis for analysis, 

design and implementation.   

In object-oriented programming, an object is defined as a concept, abstraction or thing with crisp 

boundaries and meaning for the problem at hand.  All objects have identity and are clearly 

distinguishable.  Michael Black, Audi 5000 Turbo, IBM Aptiva S35 are examples of objects. 

An object combines both data structure and its behaviour in a single entity.  This is in sharp 

contrast to conventional programming, in which data structure and the program behaviour have 

concealed or vague connections. 

When an object is created in an object-oriented programming language, we first assign a name to 

the object, then determine a set of attributes to describe the object‟s characteristics, and at last 

write procedures to specify the object‟s behaviour. 

A knowledge engineer refers to an object as a frame (the term, which has become the AI jargon).  



CS6659-Artificial Intelligence 

 Page 6 

 

Frames as a knowledge representation technique  

The concept of a frame is defined by a collection of slots.  Each slot describes a particular 

attribute or operation of the frame.  

Slots are used to store values. A slot may contain a default value or a pointer to another frame, a 

set of rules or procedure by which the slot value is obtained.  

Typical information included in a slot  

Frame name.  

Relationship of the frame to the other frames.  The frame IBM Aptiva S35 might be a member of 

the class Computer, which in turn might belong to the class Hardware. 

Slot value.  A slot value can be symbolic, numeric or Boolean.  For example, the slot Name has 

symbolic values, and the slot Age numeric values.  Slot values can be assigned when the frame is 

created or during a session with the expert system.  

Default slot value.  The default value is taken to be true when no evidence to the contrary has 

been found.  For example, a car frame might have four wheels and a chair frame four legs as 

default values in the corresponding slots. 

Range of the slot value.  The range of the slot value determines whether a particular object 

complies with the stereotype requirements defined by the frame.  For example, the cost of a 

computer might be specified between $750 and $1500. 

Procedural information.  A slot can have a procedure attached to it, which is executed if the slot 

value is changed or needed.  

Most frame based expert systems use two types of methods: 

WHEN CHANGED and WHEN NEEDED 

A WHEN CHANGED method is executed immediately when the value of its attribute changes. 

A WHEN NEEDED method is used to obtain the attribute value only when it is needed. 

A WHEN NEEDED method is executed when information associated with a particular attribute 

is needed for solving the problem, but the attribute value is undetermined. 

Most frame based expert systems allow us to use a set of rules to evaluate information contained 

in frames. 



CS6659-Artificial Intelligence 

 Page 7 

 

How does an inference engine work in a frame based system? 

In a rule based system, the inference engine links the rules contained in the knowledge base with 

data given in the database. 

When the  goal is set up, the inference engine searches the knowledge base to find a rule that has 

th goal in its consequent. 

If such a rule is found and its IF part matches data in the database, the rule is fired and the 

specified object, the goal, obtains its value. If no rules are found that can derive a value for the 

goal, the system queries the user to supply that value. 

In a frame based system, the inference engine also searches for the goal. But 

In a frame based system, rules play an auxiliary role. Frames represent here a major source of 

knowledge and both methods and demons are used to add actions to the frames. 

Thus the goal in a frame based system can be established either in a method or in a demon. 

Difference between methods and demons: 

A demon has an IF-THEN structure. It is executed whenever an attribute in the demon‟s IF 

statement changes its value. In this sense, demons and methods are very similar and the two 

terms are often used as synonyms. 

However, methods are more appropriate if we need to write complex procedures. Demons on the 

other hand, are usually limited to IF-THEN statements. 

3.3 Inference 

Two control strategies: forward chaining and backward chaining 

Forward chaining:  

Working from the facts to a conclusion. Sometimes called the datadriven approach.  To chain 

forward, match data in working memory against 'conditions' of rules in the rule-base. When one 

of them fires, this is liable to produce more data. So the cycle continues 

 Backward chaining:  

Working from the conclusion to the facts. Sometimes called the goal-driven approach.  

To chain backward, match a goal in working memory against 'conclusions' of rules in the rule-

base. 



CS6659-Artificial Intelligence 

 Page 8 

 

 When one of them fires, this is liable to produce more goals. So the cycle continues. 

The choice of strategy depends on the nature of the problem. � Assume the problem is to get 

from facts to a goal (e.g. symptoms to a diagnosis). 

Backward chaining is the best choice if:  

 The goal is given in the problem statement, or can sensibly be guessed at the beginning of the 

consultation; or:  

 The system has been built so that it sometimes asks for pieces of data (e.g. "please now do the 

gram test on the patient's blood, and tell me the result"), rather than expecting all the facts to be 

presented to it.  

 This is because (especially in the medical domain) the test may be expensive, or unpleasant, or 

dangerous for the human participant so one would want to avoid doing such a test unless there 

was a good reason for it. 

Forward chaining is the best choice if:  

 All the facts are provided with the problem statement; or:  

 There are many possible goals, and a smaller number of patterns of data; or:  

 There isn't any sensible way to guess what the goal is at the beginning of the consultation. 

 Note also that a backwards-chaining system tends to produce a sequence of questions which 

seems focussed and logical to the user, a forward-chaining system tends to produce a sequence 

which seems random & unconnected.  

 If it is important that the system should seem to behave like a human expert, backward chaining 

is probably the best choice. 

3.3.1 Forward Chaining Algorithm 

Forward chaining is a techniques for drawing inferences from Rule base. Forward-chaining 

inference is often called data driven. 

‡ The algorithm proceeds from a given situation to a desired goal,adding new assertions (facts) 

found. 

‡ A forward-chaining, system compares data in the working memory against the conditions in 

the IF parts of the rules and determines which rule to fire. 



CS6659-Artificial Intelligence 

 Page 9 

 

‡ Data Driven 

 

 

 Example : Forward Channing 

■ Given : A Rule base contains following Rule set 

Rule 1: If A and C Then F 

Rule 2: If A and E Then G 

Rule 3: If B Then E 

Rule 4: If G Then D 

 

■ Problem : Prove 

If A and B true Then D is true 

Solution : 

(i) Start with input given A, B is true and then 

start at Rule 1 and go forward/down till a rule 

“fires'' is found. 

First iteration : 

(ii) Rule 3 fires : conclusion E is true 

 new knowledge found 



CS6659-Artificial Intelligence 

 Page 10 

 

(iii)  No other rule fires; 

 end of first iteration. 

(iv) Goal not found; 

new knowledge found at (ii); 

go for second iteration 

Second iteration : 

(v) Rule 2 fires : conclusion G is true 

new knowledge found 

(vi) Rule 4 fires : conclusion D is true 

Goal found; 

 Proved 

3.3.2 Backward Chaining Algorithm 

Backward chaining is a techniques for drawing inferences from Rule base. Backward-chaining 

inference is often called goal driven. 

‡ The algorithm proceeds from desired goal, adding new assertions found. 

‡ A backward-chaining, system looks for the action in the THEN clause of the rules that matches 

the specified goal. 

Goal Driven 

 

 Example : Backward Channing 



CS6659-Artificial Intelligence 

 Page 11 

 

■ Given : Rule base contains following Rule set 

Rule 1: If A and C Then F 

Rule 2: If A and E Then G 

Rule 3: If B Then E 

Rule 4: If G Then D 

■ Problem : Prove 

If A and B true Then D is true 

Solution : 

(i) Start with goal ie D is true 

go backward/up till a rule "fires'' is found. 

First iteration : 

(ii) Rule 4 fires : 

new sub goal to prove G is true 

go backward 

(iii) Rule 2 "fires''; conclusion: A is true 

new sub goal to prove E is true 

go backward; 

 

(iv) no other rule fires; end of first iteration. 

new sub goal found at  

(iii)go for second iteration 

Second iteration : 

(v)  Rule 3 fires : 



CS6659-Artificial Intelligence 

 Page 12 

 

 conclusion B is true (2nd input found) 

 both inputs A and B ascertained 

 Proved 

CHAPTER-2 

3.4 Fuzzy Logic 

Fuzzy Logic (FL) is a method of reasoning that resembles human reasoning. The approach of FL 

imitates the way of decision making in humans that involves all intermediate possibilities 

between digital values YES and NO. 

The conventional logic block that a computer can understand takes precise input and produces a 

definite output as TRUE or FALSE, which is equivalent to human‟s YES or NO. 

The inventor of fuzzy logic, Lotfi Zadeh, observed that unlike computers, the human decision 

making includes a range of possibilities between YES and NO, such as − 

CERTAINLY YES 

POSSIBLY YES 

CANNOT SAY 

POSSIBLY NO 

CERTAINLY NO 

The fuzzy logic works on the levels of possibilities of input to achieve the definite output. 

Implementation 

 It can be implemented in systems with various sizes and capabilities ranging from small 

micro-controllers to large, networked, workstation-based control systems. 

 It can be implemented in hardware, software, or a combination of both. 

Why Fuzzy Logic? 

Fuzzy logic is useful for commercial and practical purposes. 

 It can control machines and consumer products. 

 It may not give accurate reasoning, but acceptable reasoning. 

 Fuzzy logic helps to deal with the uncertainty in engineering. 



CS6659-Artificial Intelligence 

 Page 13 

 

Fuzzy Logic Systems Architecture 

It has four main parts as shown − 

 Fuzzification Module − It transforms the system inputs, which are crisp numbers, into 

fuzzy sets. It splits the input signal into five steps such as − 

LP x is Large Positive 

MP x is Medium Positive 

S x is Small 

MN x is Medium Negative 

LN x is Large Negative 

 Knowledge Base − It stores IF-THEN rules provided by experts. 

 Inference Engine − It simulates the human reasoning process by making fuzzy inference 

on the inputs and IF-THEN rules. 

 Defuzzification Module − It transforms the fuzzy set obtained by the inference engine 

into a crisp value. 

 

 



CS6659-Artificial Intelligence 

 Page 14 

 

The membership functions work on fuzzy sets of variables. 

Membership Function 

Membership functions allow you to quantify linguistic term and represent a fuzzy set 

graphically. A membership function for a fuzzy set A on the universe of discourse X is defined 

as µA:X → [0,1]. 

Here, each element of X is mapped to a value between 0 and 1. It is called membership value or 

degree of membership. It quantifies the degree of membership of the element in X to the fuzzy 

set A. 

 x axis represents the universe of discourse. 

 y axis represents the degrees of membership in the [0, 1] interval. 

There can be multiple membership functions applicable to fuzzify a numerical value. Simple 

membership functions are used as use of complex functions does not add more precision in the 

output. 

All membership functions for LP, MP, S, MN, and LN are shown as below − 

 

The triangular membership function shapes are most common among various other membership 

function shapes such as trapezoidal, singleton, and Gaussian. 



CS6659-Artificial Intelligence 

 Page 15 

 

Here, the input to 5-level fuzzifier varies from -10 volts to +10 volts. Hence the corresponding 

output also changes. 

Example of a Fuzzy Logic System 

Let us consider an air conditioning system with 5-lvel fuzzy logic system. This system adjusts 

the temperature of air conditioner by comparing the room temperature and the target temperature 

value. 

 

Algorithm 



CS6659-Artificial Intelligence 

 Page 16 

 

 Define linguistic variables and terms. 

 Construct membership functions for them. 

 Construct knowledge base of rules. 

 Convert crisp data into fuzzy data sets using membership functions. (fuzzification) 

 Evaluate rules in the rule base. (interface engine) 

 Combine results from each rule. (interface engine) 

 Convert output data into non-fuzzy values. (defuzzification) 

Logic Development 

Step 1: Define linguistic variables and terms 

Linguistic variables are input and output variables in the form of simple words or sentences. For 

room temperature, cold, warm, hot, etc., are linguistic terms. 

Temperature (t) = {very-cold, cold, warm, very-warm, hot} 

Every member of this set is a linguistic term and it can cover some portion of overall temperature 

values. 

Step 2: Construct membership functions for them 

The membership functions of temperature variable are as shown − 

 

Step3: Construct knowledge base rules 



CS6659-Artificial Intelligence 

 Page 17 

 

Create a matrix of room temperature values versus target temperature values that an air 

conditioning system is expected to provide. 

RoomTemp. 

/Target 
Very_Cold Cold Warm Hot Very_Hot 

Very_Cold No_Change Heat Heat Heat Heat 

Cold Cool No_Change Heat Heat Heat 

Warm Cool Cool No_Change Heat Heat 

Hot Cool Cool Cool No_Change Heat 

Very_Hot Cool Cool Cool Cool No_Change 

Build a set of rules into the knowledge base in the form of IF-THEN-ELSE structures. 

Sr. No. Condition Action 

1 IF temperature=(Cold OR Very_Cold) AND target=Warm THEN Heat 

2 IF temperature=(Hot OR Very_Hot) AND target=Warm THEN Cool 

3 IF (temperature=Warm) AND (target=Warm) THEN No_Change 

Step 4: Obtain fuzzy value 

Fuzzy set operations perform evaluation of rules. The operations used for OR and AND are Max 

and Min respectively. Combine all results of evaluation to form a final result. This result is a 

fuzzy value. 

Step 5: Perform defuzzification 

Defuzzification is then performed according to membership function for output variable. 



CS6659-Artificial Intelligence 

 Page 18 

 

 

Application Areas of Fuzzy Logic 

The key application areas of fuzzy logic are as given − 

Automotive Systems 

 Automatic Gearboxes 

 Four-Wheel Steering 

 Vehicle environment control 

Consumer Electronic Goods 

 Hi-Fi Systems 

 Photocopiers 

 Still and Video Cameras 

 Television 

Domestic Goods 

 Microwave Ovens 

 Refrigerators 

 Toasters 

 Vacuum Cleaners 

 Washing Machines 



CS6659-Artificial Intelligence 

 Page 19 

 

Environment Control 

 Air Conditioners/Dryers/Heaters 

 Humidifiers 

Advantages of FLSs 

 Mathematical concepts within fuzzy reasoning are very simple. 

 You can modify a FLS by just adding or deleting rules due to flexibility of fuzzy logic. 

 Fuzzy logic Systems can take imprecise, distorted, noisy input information. 

 FLSs are easy to construct and understand. 

 Fuzzy logic is a solution to complex problems in all fields of life, including medicine, as 

it resembles human reasoning and decision making. 

Disadvantages of FLSs 

 There is no systematic approach to fuzzy system designing. 

 They are understandable only when simple. 

 They are suitable for the problems which do not need high accuracy. 

3.5 Certainty Factor 

A certainty factor (CF) is a numerical value that expresses a degree of subjective belief that a 

particular item is true. The item may be a fact or a rule. When probabilities are used attention 

must be paid to the underlying assumptions and probability distributions in order to show 

validity. Bayes‟ rule can be used to combine probability measures. 

Suppose that a certainty is defined to be a real number between -1.0 and +1.0, where 1.0 

represents complete certainty that an item is true and -1.0 represents complete certainty that an 

item is false. Here a CF of 0.0 indicates that no information is available about either the truth or 

the falsity of an item. Hence positive values indicate a degree of belief or evidence that an item is 

true, and negative values indicate the opposite belief. Moreover it is common to select a positive 

number that represents a minimum threshold of belief in the truth of an item. For example, 0.2 is 

a commonly chosen threshold value. 

Form of certainty factors in ES 



CS6659-Artificial Intelligence 

 Page 20 

 

IF <evidence> 

THEN <hypothesis>  {cf } 

cf represents belief in hypothesis H given that evidence E has occurred  

It is based on 2 functions 

i) Measure of belief MB(H, E) 

ii) Measure of disbelief MD(H, E) 

Indicate the degree to which belief/disbelief of hypothesis H is increased if evidence E were 

observed 

Total strength of belief and disbelief in a hypothesis: 

 

3.6 Bayesian networks 

 Represent dependencies among random variables 

 Give a short specification of conditional probability distribution 

 Many random variables are conditionally independent  

 Simplifies computations 

 Graphical representation 

 DAG – causal relationships among random variables 

 Allows inferences based on the network structure 

Definition of Bayesian networks 

A BN is a DAG in which each node is annotated with quantitative probability information, 

namely: 

 Nodes represent random variables (discrete or continuous) 

 Directed links XY: X has a direct influence on Y, X is said to be a parent of Y 

 each node X has an associated conditional probability table, P(Xi | Parents(Xi)) that 

quantify the effects of the parents on the node 

Example: Weather, Cavity, Toothache, Catch 



CS6659-Artificial Intelligence 

 Page 21 

 

 Weather, Cavity  Toothache, Cavity  Catch 

Example 

 

 

Bayesian network semantics 

A)   Represent a probability distribution 

B) Specify conditional independence – build the network 

A) each value of the probability distribution can be computed as: 

 P(X1=x1  … Xn=xn) = P(x1,…, xn) = i=1,n P(xi | Parents(xi)) 

where Parents(xi) represent the specific values of Parents(Xi) 

Building the network 

P(X1=x1  … Xn=xn) = P(x1,…, xn) = 

P(xn | xn-1,…, x1) * P(xn-1,…, x1) = … = 

P(xn | xn-1,…, x1) * P(xn-1 | xn-2,…, x1)* … P(x2|x1) * P(x1) = i=1,n P(xi | xi-1,…, x1) 



CS6659-Artificial Intelligence 

 Page 22 

 

 We can see that P(Xi | Xi-1,…, X1) = P(xi | Parents(Xi)) if Parents(Xi)  { Xi-1,…, 

X1} 

 The condition may be satisfied by labeling the nodes in an order consistent with a 

DAG 

 Intuitively, the parents of a node Xi must be all the nodes Xi-1,…, X1 which have a 

direct influence on Xi. 

 Pick a set of random variables that describe the problem 

 Pick an ordering of those variables 

 while there are still variables repeat 

(a) choose a variable Xi and add a node associated to Xi 

(b) assign Parents(Xi)  a minimal set of nodes that already exists in the network 

such that the conditional independence property is satisfied 

(c) define the conditional probability table for Xi 

 Because each node is linked only to previous nodes  DAG 

 P(MaryCalls | JohnCals, Alarm, Burglary, Earthquake) = P(MaryCalls | Alarm) 

 

Compactness of node ordering 

 Far more compact than a probability distribution 

 Example of locally structured system (or sparse): each component interacts directly 

only with a limited number of other components 

 Associated usually with a linear growth in complexity rather than with an exponential 

one 

 The order of adding the nodes is important 

 The correct order in which to add nodes is to add the “root causes” first, then the 

variables they influence, and so on, until we reach the leaves 

Probabilistic Interfaces 



CS6659-Artificial Intelligence 

 Page 23 

 

 

 

 

 

 

P(J  M  A B E ) = 

P(J|A)* P(M|A)*P(A|B E )*P(B) P(E)= 0.9 * 0.7 * 0.001 * 0.999 * 0.998 = 0.00062  

 

P(A|B) = P(A|B,E) *P(E|B) + P(A| B,E)*P(E|B) =  P(A|B,E) *P(E) + P(A| B,E)*P(E) 

= 0.95 * 0.002 + 0.94 * 0.998 = 0.94002 

Different types of inferences 



CS6659-Artificial Intelligence 

 Page 24 

 

Diagnosis inferences (effect  cause) 

 P(Burglary | JohnCalls) 

Causal inferences (cause  effect)  

 P(JohnCalls |Burglary),    

P(MaryCalls | Burgalry) 

 

Intercausal inferences (between cause and common effects) 

 P(Burglary | Alarm Earthquake) 

Mixed inferences 

 P(Alarm | JohnCalls  Earthquake)  diag + causal 

 P(Burglary | JohnCalls   Earthquake)  diag + intercausal 

 

3.7 Dempster-Shafer Theory 

 Dempster-Shafer theory is an approach to combining evidence 

 Dempster (1967) developed means for combining degrees of belief derived from 

independent items of evidence. 

 His student, Glenn Shafer (1976), developed method for obtaining degrees of belief for 

one question from subjective probabilities for a related question 



CS6659-Artificial Intelligence 

 Page 25 

 

 People working in Expert Systems in the 1980s saw their approach as ideally suitable for 

such systems. 

 Each fact has a degree of support, between 0 and 1: 

 0 No support for the fact 

 1 full support for the fact 

 Differs from Bayesian approah in that: 

 Belief in a fact and its negation need not sum to 1. 

 Both values can be 0 (meaning no evidence for or against the fact) 

Set of possible conclusions: Θ  

Θ = { θ1 , θ2 , …, θn } 

Where: 

 Θ is the set of possible conclusions to be drawn 

 Each θi is mutually exclusive: at most one has to be true. 

 Θ is Exhaustive: At least one θi has to be true. 

Frame of discernment  

Θ = { θ1 , θ2 , …, θn } 

 Bayes was concerned with evidence that supported single conclusions (e.g., evidence 

for each outcome θi in Θ): 

 p(θi| E) 

 D-S Theoryis concerned with evidences which support 

 subsets of outcomes in Θ, e.g., θ1 v θ2 v θ3 or {θ1, θ2, θ3} 

 The “frame of discernment” (or “Power set”) of Θ is the set of all possible subsets of 

Θ: 

E.g., if Θ = {θ1, θ2, θ3} 



CS6659-Artificial Intelligence 

 Page 26 

 

 Then the frame of discernment of Θ is: 

( Ø, θ1, θ2, θ3, {θ1, θ2}, {θ1, θ3}, {θ2, θ3}, { θ1, θ2, θ3} ) 

 Ø, the empty set, has a probability of 0, since one of the outcomes has to be true. 

 Each of the other elements in the power set has a probability between 0 and 1. 

 The probability of {θ1, θ2, θ3} is 1.0 since one has to be true. 

Mass function m(A): 

 (where A is a member of the power set) = proportion of all evidence that supports this 

element of the power set. 

 “The mass m(A) of a given member of the power set, A, expresses the proportion of all 

relevant and available evidence that supports the claim that the actual state belongs to A 

but to no particular subset of A.”  

 “The value of m(A) pertains only to the set A and makes no additional claims about any 

subsets of A, each of which has, by definition, its own mass. 

 Each m(A) is between 0 and 1. 

 All m(A) sum to 1. 

 m(Ø) is 0 - at least one must be true. 

Interpretation of m({AvB})=0.3 

 Means there is evidence for {AvB} that cannot be divided among more specific beliefs 

for A or B. 

Example 

 4 people (B, J, S and K) are locked in a room when the lights go out. 

 When the lights come on, K is dead, stabbed with a knife. 

 Not suicide (stabbed in the back) 

 No-one entered the room. 

 Assume only one killer. 



CS6659-Artificial Intelligence 

 Page 27 

 

 Θ = { B, J, S} 

 P(Θ) = (Ø, {B}, {J}, {S}, {B,J}, {B,S}, {J,S}, {B,J,S} ) 

 Detectives, after reviewing the crime-scene, assign mass probabilities to various 

elements of the power set: 

 

Belief in A: 

The belief in an element A of the Power set is the sum of the masses of elements which are 

subsets of A (including A itself). 

E.g., given A={q1, q2, q3} 

Bel(A) = m(q1)+m(q2)+m(q3)+ m({q1, q2})+m({q2, q3})+m({q1, q3})+m({q1, q2, q3}) 

Example 

 Given the mass assignments as assigned by the detectives: 

 

 bel({B}) = m({B}) = 0.1 

 bel({B,J}) = m({B})+m({J})+m({B,J}) =0.1+0.2+0.1=0.4 

 Result: 

 



CS6659-Artificial Intelligence 

 Page 28 

 

 

Plausibility of A: pl(A) 

The plausability of an element A, pl(A), is the sum of all the masses of the sets that intersect with 

the set A: 

E.g. pl({B,J}) = m(B)+m(J)+m(B,J)+m(B,S) +m(J,S)+m(B,J,S) = 0.9 

All Results: 

 

Disbelief (or Doubt) in A: dis(A) 

The disbelief in A is simply bel(¬A). 

It is calculated by summing all masses of elements which do not intersect with A. 

The plausibility of A is thus 1-dis(A): 

pl(A) = 1- dis(A) 

 

Belief Interval of A: 

The certainty associated with a given subset A is defined by the belief interval: 

[ bel(A) pl(A) ] 

E.g. the belief interval of {B,S} is: [0.1 0.8] 

 

 



CS6659-Artificial Intelligence 

 Page 29 

 

 

Belief Intervals & Probability 

The probability in A falls somewhere between bel(A) and pl(A). 

 bel(A) represents the evidence we have for A directly So prob(A) cannot be less than this 

value. 

 pl(A) represents the maximum share of the evidence we could possibly have, if, for all 

sets that intersect with A, the part that intersects is actually valid. So pl(A) is the 

maximum possible value of prob(A). 

 

Belief Intervals: 

Belief intervals allow Demspter-Shafer theory to reason about the degree of certainty or certainty 

of our beliefs. 

 A small difference between belief and plausibility shows that we are certain about our 

belief. 

 A large difference shows that we are uncertain about our belief. 

However, even with a 0 interval, this does not mean we know which conclusion is right. Just 

how probable it is! 

 

 

PART – A 

1. Define NMR 



CS6659-Artificial Intelligence 

 Page 30 

 

2. Define Justifications 

3. What is non monotonic inference? 

4. Difference between JTMS and LTMS 

5. Define Bayes theorem. 

6. What do you mean by Rule based system? 

7. Define fuzzy logic. 

8. What is credit assignment problem? 

9. Define Frame problems. 

14. What do you understand by Default reasoning. 

15. Define frames.  

16. What are singular extensions? 

17. What is a Bayesian network? 

18. Define dumpster Shafer theory. 

PART-B 

1. Distinguish between 

a. Production Based System. 

b. Frame Based System 

2. What is uncertainty? How to reason out in each situation? What are the various strategies 

under such case? 

3. Write a note on a. Fuzzy reasoning b. Bayesian probability c. Certainty factors 

4. What is certainty factor? Compute certainty factor based on hypothesis. 

5. How does inference engine work in a frame based system. 

6. Explain Bayesian Network. 

 


